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Review of Ramayya et al.

In a world rich with stimuli and potential
actions, organisms must learn which ob-
jects are rewarding and which actions pro-
duce rewards. Dopamine neurons may
play a key role in learning the values of
stimuli and actions by representing re-
ward prediction errors (RPEs), the differ-
ence between experienced and predicted
reward. Although many studies report
that phasic activity of dopamine neurons
in the ventral tegmental area (VTA) and
substantia nigra (SN) represents RPEs in
humans (Zaghloul et al., 2009) and other
animals (Schultz et al., 1997; Cohen et al.,
2012), only recently has evidence emerged
to support an instrumental role for phasic
dopamine in reinforcement learning
(Steinberg et al., 2013). However, it re-
mains unclear whether the phasic activity
of dopamine neurons in the VTA and SN
play different roles in reinforcement
learning. This issue is of particular impor-
tance given the selective deterioration of

SN dopamine neurons in Parkinson’s dis-
ease (Kish et al., 1988).

Ramayya et al. (2014) recently re-
ported the results of a study addressing
this important question. During deep
brain stimulation (DBS) surgery to treat
Parkinson’s disease, patients routinely
undergo recording and microstimulation
of SN neurons to aid surgeons with DBS
electrode placement in the nearby subtha-
lamic nucleus. These operations provided
the opportunity to record SN neurons
during a probability-learning task and to
use electrical microstimulation of those
neurons to manipulate behavior.

In three blocks of 50 trials each, sub-
jects made 25 choices with one stimulus
pair and 25 choices with another stimulus
pair, with the two pairs presented in alter-
nating trains of three to six trials. One
stimulus in each pair was associated with a
high probability of reward (the “high-
probability stimulus”) and the other stim-
ulus was associated with a low probability
of reward (the “low-probability stimu-
lus”). Importantly, the left–right configu-
ration of the stimuli in each pair was
random, and therefore successful task
performance required learning the values
of stimuli and not the values of actions
(i.e., left or right button presses).

In the first block, subjects on average
made correct responses in 63% of trials.
At the same time, the authors recorded the
waveform and phasic spike response to
positive feedback for a single SN neuron

in each subject. In the second block, pha-
sic microstimulation was applied coinci-
dent with all positive feedback resulting
from the high-probability stimulus for
one of the two stimulus pairs (the STIMPOS

pair); this outcome, as a positive RPE,
should be associated with an increase in
phasic dopamine (Hart et al., 2014). Thus,
microstimulation is expected to further
increase phasic dopamine release associ-
ated with the positive RPE. In the third
and final block, phasic microstimulation
was applied coincident with all negative
feedback from the low-probability stimu-
lus for one of the two stimulus pairs (the
STIM NEG pair); this outcome, as a nega-
tive RPE, should be associated with a de-
crease in phasic dopamine (Hart et al.,
2014). Thus, microstimulation might
counteract the phasic dopamine decrease
normally associated with a negative RPE.

The authors reported that correct task
performance decreased for the STIM POS

stimulus pair, suggesting that SN micro-
stimulation does not enhance the learning
of stimulus values needed to perform the
task. This immediately suggests that the
SN plays a different role in reinforcement
learning to the VTA, where microstimula-
tion potentiates stimulus–reward learn-
ing (Steinberg et al., 2013; Arsenault et al.,
2014). To test whether this decline in per-
formance related to an increased empha-
sis on learning of action–reward rather
than stimulus–reward associations, the
authors developed a hybrid action–stimu-
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lus learning model (Fig. 1A). In this
model, stimulus and action values are
learned separately and then combined,
using a weighting parameter, into an ag-
gregate value for each action–stimulus
combination. In model simulations, in-
creasing the weighting parameter to give
action values a greater influence on com-
bined values resulted in a decline in
STIM POS performance. Model simula-
tions were also consistent with other fea-
tures of the data, such as a significant
correlation across subjects between the
decrease in STIM POS accuracy and the
probability of repeating the same action
(i.e., left or right button press) after posi-
tive feedback, a probability that depends
on the extent to which action values influ-
ence decision making.

The authors also found that task
performance did not decrease for the
STIM NEG pair, but their model simula-
tions did not offer an explanation for this
surprising result. We therefore explored
an alternative interpretation of the results
using the same hybrid model but with
microstimulation increasing the action-
value RPE term that SN dopamine neu-
rons might represent, instead of the
weighting parameter (Fig. 1A). We gener-
ated simulations using the hybrid model
with the same parameters (� � 0.2, � �
0.2) and equal weighting for stimulus and
action values (WA � 0.5).

Using this approach, we reproduced the
main features of the data, including a greater
decrease in accuracy for the STIMPOS pair
(Fig. 1B) than for the STIM NEG pair (Fig.
1C). For example, a stimulation magni-
tude sufficient to elicit a 12% accuracy de-
crease for the STIM POS pair led to only a
4% accuracy decrease for the STIM NEG

pair. This asymmetry has a simple expla-
nation: negative feedback should normally
weaken action–reward associations but stim-
ulationduringthat feedbackmightcounteract
negative action-value RPEs. Paradoxically,
small STIM NEG microstimulation magni-
tudes could actually improve perfor-
mance in a task where performance
depends only on stimulus values because
they might reduce the average difference
in values between the actions, and thus
the influence of action values on choice
(Fig. 1C). Our alternative approach also
has the benefit of obviating the need for
the brain to store combined action–stim-
ulus values. Instead, action values and
stimulus values can be combined during
the decision process, which may be more
parsimonious than updating action–stim-
ulus values using a weighting parameter
that is only affected by stimulation at the

time of outcome delivery. Further re-
search will be needed to determine exactly
how the weighting parameter exerts its
effect.

The results of Ramayya et al. (2014)
suggest that SN dopamine neurons repre-
sent action-value RPEs, complementing
the possibility that VTA dopamine neu-
rons represent stimulus-value RPEs. This
division of labor between the SN and VTA
is consistent with distinct patterns of in-
puts to VTA and SN dopamine neurons
(Watabe-Uchida et al., 2012), recent find-
ings that stimulating VTA dopamine
neurons increases stimulus–reward asso-
ciations (Steinberg et al., 2013; Arsenault
et al., 2014), and the finding that optoge-
netic stimulation of VTA and SN dopa-
mine neurons have similar effects on
operant place preference in mice when, as
in many tasks, stimulus-value or action-
value learning make similar behavioral
predictions (Ilango et al., 2014).

How might the role of the SN in rein-
forcement learning be further tested? If
the SN plays a role in action-value but not
stimulus-value learning, microstimula-
tion of SN dopamine neurons in Parkin-
son’s patients should improve STIM POS

performance in tasks that could be
learned by either mechanism, and in tasks
in which feedback depends only on ac-
tions. Furthermore, electrophysiological
recordings during these tasks could reveal
whether VTA and SN dopamine activity
represent different types of RPEs or reflect
the weighting parameter used in different
tasks.

A prominent proposal (the actor–
critic model) suggests that stimulus-value
RPEs represented by dopaminergic pro-
jections from the VTA to the ventral stria-
tum (the “critic”) underlie learning of
stimuli or states necessary for Pavlovian
conditioning. The same stimulus-value
RPEs are then used to inform instrumen-
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Figure 1. Model simulations for microstimulation effects on reinforcement learning. A, The hybrid action-stimulus learning
model of Ramayya et al. (2014) features separate stimulus values (Qstimulus) and action values (Qaction) that are aggregated with
a weighting parameter WA into combined values (AQstimulus, action) used to make decisions. Stimulation is suggested to increase
WA (yellow lightning bolt), thereby increasing the influence of action values on decisions. An alternative possibility (red lightning
bolt) is that stimulation increases action-value RPEs used to update action values. B, In the STIM POS condition, stimulation
coincides with positive feedback from the high-value stimulus for the STIM POS pair. If phasic dopamine activity represents
action-value RPEs, then as the magnitude of SN dopamine neuron stimulation increases, the average difference in the action
values for the two actions increases (red) and action values exert a greater influence on decision making relative to stimulus values
(blue). As the influence of action values increases, performance in a stimulus-value learning task decreases (green). C, In the
STIM NEG condition, stimulation coincides with negative feedback from the low-value stimulus for the STIM NEG pair. For low
magnitudes, stimulation does not increase the influence of action values on decision making. Higher stimulation magnitudes are
necessary to obtain deficits comparable to the STIM POS condition.
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tal choice, training an “actor” putatively
located in the dorsal striatum (Balleine et
al., 2008). Neuroimaging (O’Doherty et
al., 2004) and pharmacological (Piray
et al., 2014) studies support this distinc-
tion, but it is unclear what the role of SN
dopamine neurons might be in this
scheme, since electrophysiological results
suggest that SN dopamine neurons do not
represent stimulus-value RPEs (Morris et
al., 2006). The hybrid action–stimulus
learning model introduced by Ramayya et
al. (2014) differs from the actor– critic
model in that values associated with ac-
tions can be learned in isolation from
stimulus values (although it remains un-
clear whether this learning is entirely
stimulus-independent or whether action
values are separately linked to each stim-
ulus pair). If SN dopamine neurons are
not used to learn stimulus values, as these
findings suggest, SN microstimulation
might have no effect on Pavlovian phe-
nomena such as vigor, which might be re-
flected in reaction times. Further studies
might use microstimulation of the VTA
and SN to explicitly compare the predic-
tions of these differing models of basal
ganglia function.

The finding that changes in accuracy
can be understood as changes in the
weighting of action and stimulus values
raises some interesting possibilities. Early-
stage nonmedicated Parkinson’s patients
might show deficits in an action-value
learning task due to loss of SN dopamine
neurons but might actually outperform
control subjects in a stimulus-value learn-
ing task due to a reduced influence of

action values on their choices. The
weighting parameter introduced in this
study may also provide an informative
way of characterizing behavior, providing
a behavioral assay that may relate to pat-
terns of dopamine depletion in Parkin-
son’s disease.

The demonstration by Ramayya et al.
(2014) of a role for the human SN in
action-value learning is an important ad-
vance in our understanding of reinforce-
ment learning in humans. These results
suggest several interesting directions for
future research that might clarify the pre-
cise roles of VTA and SN dopamine neu-
rons and at the same time advance our
understanding of Parkinson’s disease and
the effects of dopaminergic drugs on
behavior.
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